
CFD General Notation System

CGIO User’s Guide

Document Version 3.1.1

CGNS Version 3.1.3

Contents

1 Introduction 1

2 The CGIO Software Library 2
2.1 Node - The Building Block . 2
2.2 Node Attributes . 2
2.3 Supported Data Types . 4
2.4 Glossary of Terms . 5
2.5 Conventions and Implementations . 6
2.6 Limits and Sizes . 7

3 Database-Level Routines 8
3.1 Function Descriptions . 8

3.1.1 cgio_is_supported . 8
3.1.2 cgio_check_file . 8
3.1.3 cgio_open_file . 9
3.1.4 cgio_close_file . 9
3.1.5 cgio_get_file_type . 9
3.1.6 cgio_get_root_id . 9

4 Data Structure Management Routines 10
4.1 Function Descriptions . 11

4.1.1 cgio_create_node . 11
4.1.2 cgio_new_node . 11
4.1.3 cgio_delete_node . 11
4.1.4 cgio_move_node . 11
4.1.5 cgio_number_children . 12
4.1.6 cgio_children_names . 12
4.1.7 cgio_children_ids . 12

5 Link Management Routines 13
5.1 Function Descriptions . 13

5.1.1 cgio_is_link . 13
5.1.2 cgio_link_size . 14
5.1.3 cgio_create_link . 14
5.1.4 cgio_get_link . 14

6 Node Management Routines 15
6.1 Function Descriptions . 16

6.1.1 cgio_get_node_id . 16
6.1.2 cgio_get_name . 16
6.1.3 cgio_set_name . 16
6.1.4 cgio_get_label . 16
6.1.5 cgio_set_label . 16
6.1.6 cgio_get_data_type . 16
6.1.7 cgio_get_dimensions . 16
6.1.8 cgio_set_dimensions . 17

7 Data I/O Routines 18
7.1 Function Descriptions . 19

7.1.1 cgio_read_data . 19

iii

7.1.2 cgio_read_all_data . 19
7.1.3 cgio_read_block_data . 20
7.1.4 cgio_write_data . 20
7.1.5 cgio_write_all_data . 20
7.1.6 cgio_write_block_data . 20

8 Error Handling Routines 21
8.1 Function Descriptions . 21

8.1.1 cgio_error_message . 21
8.1.2 cgio_error_code . 21
8.1.3 cgio_error_exit . 21
8.1.4 cgio_error_abort . 22

8.2 Error Messages . 22

9 Miscellaneous Routines 26
9.1 Function Descriptions . 26

9.1.1 cgio_flush_to_disk . 26
9.1.2 cgio_library_version . 26
9.1.3 cgio_file_version . 26

10 Examples 27
10.1 Fortran Example . 27
10.2 C Example . 32

iv

1 Introduction

The CGIO interface provides low-level access to the database manager which underlies CGNS.
The original database manager for CGNS was ADF (Advanced Data Format), and as such much of
the CGIO interface routines are patterned after this. Starting with CGNS library version 2.xx, a
new database manager HDF5 (Hierarchical Data Format) was introduced. At that time only one of
these database managers could be used at a time, and this was selected at build time.

In CGNS library version 3.xx, the CGIO interface was developed to support both database
managers simultaneously, and in a fashion transparent to the application code. This is now the
preferred way to acces the database manager.

This document defines the general structure of a database file, but not the specific implementation
details. See the ADF and HDF5 Implementations for the details. The CGIO core routines used to
store and retrieve data from the database manager are also described.

1

2 The CGIO Software Library

2.1 Node - The Building Block

A database is a hierarchical system that is built around the concept of a ”node”. Each node
contains information about itself and its ancestors and possibly data (e.g., arrays, vectors, character
strings, etc.). Each of these nodes, in turn, may be connected to an arbitrary number of children,
each of which is itself a node. In this system, a node contains user-accessible information related to
identification, name, type, and amount of data associated with it, and pointers to child nodes. Basic
nodal information includes:

• a unique ID (node locator)

• a name (character string) used to describe the node and its data

• a label (character string) an additional field used to describe the node and its data. It is
analogous to, but not exactly the same as, the name.

• information describing the type and amount of data

• data

• IDs of child nodes

There are no restrictions on the number of child nodes that a node can have associated with it in
the database. This structure allows the construction of a hierarchical database as shown in Figure 1
on p. 3. As illustrated in the figure, it is possible to reference nodes in a second file (File Two) from
the original file (File One). This is the concept of “linking.”

A node knows about itself and its children, but it does not know anything about its parent. This
means that it is possible to traverse “down” the tree by making queries about what lies below the
current node, but it is not possible to traverse “up” the tree by making queries about nodes above a
given node. If it is desired to move back up the tree, the user must keep track of that information.

All database files start with a root node, which is created automatically when a new file is opened.
There is only one root node in a database file, and may be referenced by the database Root ID or
by name as “/”.

2.2 Node Attributes

Each node in the database may have zero to many subnodes that are associated with it, as well as
its own data. The following are a list of attributes accessible by the user for a node in the hierarchical
database system.

Data The data associated with a node.

Data Type A 2-byte character field, blank filled, case sensitive. Specifies the type
of data (e.g., real, integer, character) associated with this node. The
supported data types are listed in Table 1 on p. 4.

Dimensions An integer vector containing the number of elements within each di-
mension. For example, if the array A was declared (using Fortran) as
A(10,20), the Dimension vector would contain two entries (10,20).

2

2 The CGIO Software Library

Figure 1: Example Database Hierarchy of Nodes

ID A unique identifier to access a given node within a file. This field
contains sufficient information for the database manager to locate the
node within a file. For any given node, the ID is generated only after
the file it resides in has been opened by a program and the user requests
information about the node. The ID is valid only within the program
that opened the file and while that file is open. If the file is closed and
reopened, the ID for any given node may be different. Within different
programs, the node ID for the same node may also be different. The
ID is never actually written into a file.

Label A 32-byte character field. The rules for Labels are identical to those for
Names. Unlike names, Labels do not have to be unique. The Label
field was introduced to allow “data typing” similar to the “typedef”
concept in C. Using the Label field in this way allows programs to
know some additional information about the use of the node itself or
its child nodes and to call specific subroutines to read the data or react
in specific ways upon detection of the type.

Name A 32-byte character field. The names of child nodes directly attached

3

CGIO User’s Guide

to a parent node must be unique. For example, in Figure 1, all nodes
directly attached to N3 must have unique names. When a request to
create a new node is made, the databse manager checks the requested
name against the other names of the child nodes of the specified parent.
If the requested name is not unique, an error is returned.

Legal characteristics of a name are a A-Z, a-z, 0-9, and special char-
acters (ASCII values from 32 to 126, except for the forward slash “/”
(ASCII number 47)). Names will be blank filled to 32 bytes; they are
case sensitive. Leading blanks are discarded and trailing blanks are
ignored, whereas internal blanks are significant.

Note: Names passed from C must have the null “\0” character ap-
pended to them. Names returned through the C interface will have
the null character appended to them. Therefore, C programs should
allocate 33 bytes for any Name in order to accommodate the null char-
acter.

Fortran programs can allocate 32 characters for Names. The Fortran
interface takes care of adding or removing the null character as re-
quired.

Names of Subnodes A list of names of the subnodes (children) of a node. (This is the
information contained in the child table.)

Number of Dimensions The dimensionality of the data. ADF views all data as an array and
can handle from zero (i.e., no data) to 12 dimensions. A “0” is used if
the data type is empty. Thus, a scalar is viewed as a vector with one
dimension and length 1.

Number of Subnodes The number of child nodes directly attached to any given node. Each
node can have zero or more child nodes directly associated with it.

Pointer An address, from the point of view of a programming language. Point-
ers are like jumps, leading from one part of the data structure to an-
other.

2.3 Supported Data Types

Table 1: Data Types

Notation Data Type C Type Fortran Type

MT No Data
I4 32-bit Integer int integer*4

I8 64-bit Integer cglong_t integer*8

U4 32-bit Unsigned Integer unsigned int integer*4

U8 64-bit Unsigned Integer cgulong_t integer*8

R4 32-bit Real float real*4

R8 64-bit Real double real*8

C1 Character char character

4

2 The CGIO Software Library

B1 Byte (unsigned byte) unsigned char character*1

LK Link

The MT node contains no data, and is typically used as a container for subnodes (children).

A link is denoted by LK, and defines the linkage between nodes and subnodes. A link provides
a mechanism for referring to a node that physically resides in a different part of the hierarchy or a
different database file. The link parallels a soft link in the UNIX operating system in that it does
not guarantee that the referenced node exists. The database manager will “resolve” the link only
when information is requested about the linked node or it’s children.

2.4 Glossary of Terms

Child One of the subnodes of a Parent. A child node does not have knowledge of its
parent node. The user must keep track of this relationship.

Database The representation of a hierarchy of nodes on disk files. By use of links, it may
physically span multiple files.

File An database file, which a single root node and its underlying structure.

ID A unique identifier to access a given node within a database file. This field contains
sufficient information for the database manager to locate the node within a file.
For any given node, the ID is generated only after the file it resides in has been
opened by a program and the user requests information about the node. The ID
is valid only within the program that opened the file and while that file is open.
If the file is closed and reopened, the ID for any given node may be different.
Within different programs, the node-ID for the same node may also be different.
The ID is never actually written into a file.

Link-Node A special type of node. Links are created using the cgio_create_link (Sec-
tion 5.1.3) subroutine. The data type of this node is LK, and its data is a one-
dimensional array containing the name of the file (if other than the current file)
containing the node to be linked and the full path name in that file from the root
node to the desired node.

Links provide a mechanism for referring to a node that physically resides in a
different part of the hierarchy. The node pointed to by a link may or may not
reside in the same file as the link itself. A link within ADF is very similar to
a “soft” link in the UNIX operating system in that it does not guarantee that
the referenced node exists. ADF will “resolve” the link only when information is
requested about the node. If the ID of a link-node is used in an ADF call, the
effect of the call is the same as if the ID of the linked-to node was used. Note
that a link node does not have children itself. In Figure 1 on p. 3, the children
seen for L3 are F4 and F5. If a child is “added” to L3, then in reality, the child is
added to F3. There are specialized subroutines provided to create link nodes and
extract the link details.

Node The single component used to construct a database.

Node name A node has a 32-character name. Every child node directly under a given parent
must have a unique name. Legal characteristics in a name are A-Z, a-z, 0-9,

5

CGIO User’s Guide

and special characters (ASCII values from 32 to 126, omitting the forward slash
“/”, ASCII number 47). Names will be blank filled to 32 bytes; they are case
sensitive. Leading blanks are discarded and trailing blanks are ignored, whereas
internal blanks are significant.

Parent A node that has subnodes directly associated with it.

Pathname Within a database, nodes can be referenced using the name of a node along with
its parent ID, or by using a“pathname”whose syntax is roughly the same as a path
name in the UNIX environment. A pathname that begins with a leading slash
“/” is assumed to begin at the root node of the file. If no leading slash is given,
the name is assumed to begin at the node specified by the parent ID. Although
there is a 32-character limitation on the node Name, there is no restriction on
the length of the pathname. For example, equivalent ways to refer to node N8 in
Figure 1 are:

• Node-ID for N6 and name = “N8”

• Node-ID for N4 and name = “N6/N8”

• Node-ID for N1 and name = “N4/N6/N8”

• Node-ID for the Root_Node and name = “/N1/N4/N6/N8”

2.5 Conventions and Implementations

C All input strings are to be null terminated. All returned strings will have the
trailing blanks removed and will be null terminated. Variables declared to hold
Names, Labels, and Data-Types should be at least 33 characters long. cgns io.h
has a number of variables defined. An example declaration would be:

char name[CGIO_MAX_NAME_LENGTH+1];

Fortran Strings will be determined using inherited length. Returned strings will be blank
filled to the specified length. All returned names will be left justified and blank
filled on the right. There will be no null character. An example declaration would
be:

PARAMETER CGIO_MAX_NAME_LENGTH=32
CHARACTER*(CGIO_MAX_NAME_LENGTH) NAME

or include the Fortran header file cgns io f.h which defines these parameters.

ID A unique identifier to access a given node within a database. For any given node,
the ID is generated only after the file it resides in has been opened by a program
and the user requests information about the node. The ID is valid only within the
program that opened the file and while that file is open. If the file is closed and
reopened, the ID for any given node may be different. Within different programs,
the node ID for the same node may also be different. The ID is not ever actually
written into a file.

The declaration for variables that will hold node IDs should be for an 8-byte real
number.

Indexing All indexing is Fortran-like in that the starting index is 1 and the last is N for
N items in an index or array dimension. The array structure is assumed to be

6

2 The CGIO Software Library

the same as in Fortran with the first array dimension varying the fastest and the
last dimension varying the slowest.

The index starting at one is used in cgio_read_data (Section 7.1.1), cgio_write_data
(Section 7.1.4), cgio_children_names (Section 4.1.6), and cgio_children_ids
(Section 4.1.7).

The user should be aware of the differences in array indexing between Fortran and
C. The subroutines cgio_read_all_data (Section 7.1.2) and cgio_write_all_data
(Section 7.1.5) merely take a pointer to the beginning of the data, compute how
much data is to be read/written, and process as many bytes as have been re-
quested. Thus, these routines effectively make a copy of memory onto disk or
vice versa. Given this convention, it is possible for a C program to use standard
C conventions for array indexing and use cgio_write_all_data to store the ar-
ray on disk. Then a Fortran program might use cgio_read_all_data to read
the data set. Unless the user is aware of the structure of the data, it is possible
for the array to be transposed relative to what is expected.

The implications of the assumed array structure convention can be quite subtle.
The subroutines cgio_write_data and cgio_read_data assume the Fortran ar-
ray structure in order to index the data. Again, unless the user is aware of the
implications of this, it is possible to write an array on disk and later try to change
a portion of the data and not change the correct numbers.

As long as users are aware of how their data structure maps onto the database,
there will not be any problems.

return codes The CGIO routines return an integer code indicating whether they were suc-
cessfull or not. On success, 0 (CGIO_ERR_NONE) is returned. A non-zero return
indicates an error. Return codes < 0 indicate an error at the CGIO level; codes
> 0 indicate an error in the database manager. See Section 8.2 for a list of error
codes and mesages.

2.6 Limits and Sizes

The following default values, sizes, and limits are defined in the header file cgns io.h.

Table 2: Default Values and Sizes

Define Value Attribute

CGIO_MAX_DATATYPE_LENGTH 2 Data type length
CGIO_MAX_DIMENSIONS 12 Maximum dimensions
CGIO_MAX_NAME_LENGTH 32 Name length
CGIO_MAX_LABEL_LENGTH 32 Label length
CGIO_MAX_VERSION_LENGTH 32 Version length
CGIO_MAX_DATE_LENGTH 32 Date length
CGIO_MAX_ERROR_LENGTH 80 Maximum length of error string
CGIO_MAX_LINK_DEPTH 100 Maximum link depth
CGIO_MAX_FILE_LENGTH 1024 File name length
CGIO_MAX_LINK_LENGTH 4096 Maximum link data size

7

CGIO User’s Guide

3 Database-Level Routines

Functions Modes
ier = cgio_is_supported(int file_type); - - -

ier = cgio_check_file(const char *filename, int *file_type); - - -

ier = cgio_open_file(const char *filename, int file_mode, r w m

int file_type, int *cgio_num);

ier = cgio_close_file(int cgio_num); r w m

ier = cgio_get_file_type(int cgio_num, int *file_type); r w m

ier = cgio_get_root_id(int cgio_num, double *rootid); r w m

call cgio_is_supported_f(file_type, ier) - - -

call cgio_check_file_f(filename, file_type , ier) - - -

call cgio_open_file_f(filename, file_mode, file_type, cgio_num , ier) r w m

call cgio_close_file_f(cgio_num, ier) r w m

call cgio_get_file_type_f(cgio_num, file_type , ier) r w m

call cgio_get_root_id_f(cgio_num, rootid , ier) r w m

Input/Output

file_type Type of database file. acceptable values are CGIO_FILE_NONE, CGIO_FILE_ADF,
CGIO_FILE_HDF5 and CGIO_FILE_ADF2.

filename Name of the database file, including path name if necessary. There is no limit on
the length of this character variable.

file_mode Mode used for opening the file. The supported modes are CGIO_MODE_READ,
CGIO_MODE_WRITE, and CGIO_MODE_MODIFY.

cgio_num Indentifier for the open database file.

rootid Ndeo identifier for the root node of the database.

ier Error status.

3.1 Function Descriptions

3.1.1 cgio_is_supported

Determines if the database type given by file_type is supported by the library. Retuns 0 if
supported, else CGIO_ERR_FILE_TYPE if not. CGIO_FILE_ADF is always supported; CGIO_FILE_HDF5
is supported if the library was built with HDF5; and CGIO_FILE_ADF2 is supported when built in
32-bit mode.

3.1.2 cgio_check_file

Checks the file filename to determine if it is a valid database. If so, returns 0 and the type of
database in file_type, otherwise returns an error code and file_type will be set to CGIO_FILE_NONE.

8

3 Database-Level Routines

3.1.3 cgio_open_file

Opens a database file of the specified type and mode. If successfull, returns 0, and the database
identifier in cgio_num, otherwise returns an error code. The database identifier is used to access the
database in subsequent function calls.

The mode in which the database is opened is given by file_mode, which may take the value
CGIO_MODE_READ, CGIO_MODE_WRITE, or CGIO_MODE_MODIFY. New databases should be opened with
CGIO_MODE_WRITE, while existing databases are opened with either CGIO_MODE_READ (for read-only
access) or CGIO_MODE_MODIFY (for read/write access).

A specific database type may be specified by file_type, which may be one of CGIO_FILE_NONE,
CGIO_FILE_ADF, CGIO_FILE_HDF5, or CGIO_FILE_ADF2. When opening a database in write mode,
CGIO_FILE_NONE indicates that the default database type should be used, otherwise the specified
database type will be opened. When opening in read or modify mode, CGIO_FILE_NONE indicates
that any database type is acceptable, otherwise if the database type does not match that given by
file_type an error will be retuned.

3.1.4 cgio_close_file

Closes the database given by cgio_num. Returns 0 for success, else an error code.

3.1.5 cgio_get_file_type

Gets the type of the database given by cgio_num. Returns 0 and the type in file_type if successfull,
else an error code.

3.1.6 cgio_get_root_id

Gets the unique node identifier for the root node in the database given by cgio_num. Returns 0 and
the identifier in rootid if successfull, else an error code.

9

CGIO User’s Guide

4 Data Structure Management Routines

Functions Modes
ier = cgio_create_node(int cgio_num, double pid, const char *name, - w m

double *id);

ier = cgio_new_node(int cgio_num, double pid, const char *name, - w m

const char *label, const char *data_type, int ndims,

const cgsize_tt *dims, const void *data, double *id);

ier = cgio_delete_node(int cgio_num, double pid, double id); - w m

ier = cgio_move_node(int cgio_num, double pid, double id, - w m

double new_pid);

ier = cgio_number_children(int cgio_num, double id, int *num_child); r w m

ier = cgio_children_names(int cgio_num, double id, int start, r w m

int max_ret, int name_len, int *num_ret , char *child_names);

ier = cgio_children_ids(int cgio_num, double id, int start, r w m

int max_ret, int *num_ret , char *child_ids);

call cgio_create_node_f(cgio_num, pid, name, id , ier) - w m

call cgio_new_node_f(cgio_num, pid, name, label, data_type, ndims, - w m

dims, data, id , ier);

call cgio_delete_node_f(cgio_num, pid, id, ier) - w m

call cgio_move_node_f(cgio_num, pid, id, new_pid, ier) - w m

call cgio_number_children_f(cgio_num, id, num_child , ier) r w m

call cgio_children_names_f(cgio_num, id, start, max_ret, name_len, r w m

num_ret , child_names , ier)

call cgio_children_ids_f(cgio_num, id, start, max_ret, r w m

num_ret , child_ids , ier)

Input/Output

cgio_num Database identifier.

pid Parent node identifier.

id Node identifier.

name Node name (max length 32).

label Node label (max length 32).

data_type Type of data contained in the node. One of “MT”, “I4”, “I8”, “U4”, “U8”, “R4”,
“C1”, or “B1”.

ndims Number of dimensions for the data (max 12).

dims Data dimension values (ndims values).

data Data array to be stored with the node.

new_pid New parent node identifier under which the node is to be moved.

10

4 Data Structure Management Routines

num_child Number of children of the specified node.

start Starting index for returned child names or ids (1 <= start <= num_child).

max_ret Maximum child names or ids to be returned (1 <= max_ret <=
num_child-start+1).

name_len Length reserved for each returned child name.

num_ret Number of returned values of child names or identifiers.

child_names Child node names (num_ret values). This array should be dimensioned at least
(name_len * max_ret).

child_ids Child node identifiers (num_ret values). This array should be dimensioned at
least (max_ret).

ier Error status.

4.1 Function Descriptions

4.1.1 cgio_create_node

Creates a new empty node in the database given by cgio_num as a child of the node identified by
pid. The name of the new node is given by name, and must not already exist as a child of the parent
node. The node will contain no label, dimensions, or data. Use the Node Management Routines
(Section 6) to change the properties of the node, and the Data I/O Routines (Section 7) to add data.
Returns 0 and the identifier of the new node in id on success, else an error code.

4.1.2 cgio_new_node

Creates a new node in the database given by cgio_num as a child of the node identified by pid. The
name of the new node is given by name, and must not already exist as a child of the parent node. The
node label is given by label, the type of data by data_type, the dimensions of the data by ndims
and dims, and the data to write to the node by data. This is equivalent to calling the routines:
cgio_create_node, cgio_set_label. cgio_set_dimensions, and cgio_write_all_data. Returns
0 and the identifier of the new node in id on success, else an error code.

4.1.3 cgio_delete_node

Deletes the node identified by id below the parent node identified by pid in the database given by
cgio_num. All children of the deleted node will also be deleted unless a link is encountered. The
link node will be deleted but nothing below it. Returns 0 on success, else an error code.

4.1.4 cgio_move_node

Moves the node indentified by id below the parent node identified by pid to below the new parent
node identified by new_pid in the database given by cgio_num. A node by the same name as that
that for id must not already exist under new_pid. A node may only be moved if it and the parent
nodes all reside in the sane physical database. Returns 0 on success, else an error code.

11

CGIO User’s Guide

4.1.5 cgio_number_children

Gets the number of children of the node identified by id in the database given by cgio_num, Returns
0 and the number of children in num_child on success, else an error code.

4.1.6 cgio_children_names

Gets the names of the children of the node identified by id in the database given by cgio_num.
The starting index for the array of names is given by start, and the maximum number of names
to return by max_ret. Both start and max_ret should be between 1 and num_child, inclusively.
The size reserved for each name in child_names is given by name_len. The array child_names
should be dimensioned at least (name_len * max_ret). Since node names are limited to a length of
CGIO_MAX_NAME_LENGHT (32), name_len should be at least 32 to ensure the returned names are mot
truncated. In C, an additional byte should be added to name_len allow for the terminating ’0’ for
each name. If successfull, the function returns 0; the actual number of returned names is given by
num_ret, and the array of names in child_names. In C, the names are ’0’-terminated within each
name field. In Fortran, any unused space is padded with blanks (space character).

4.1.7 cgio_children_ids

Gets the node identifiers of the children of the node identified by id in the database given by
cgio_num. The starting index for the array of ids is given by start, and the maximum ids to return
by max_ret. Both start and max_ret should be between 1 and num_child, inclusively. The array
child_ids should be dimensioned at least (max_ret). If successfull, the function returns 0; the
actual number of returned ids is given by num_ret, and the array of identifiers in child_ids.

12

5 Link Management Routines

5 Link Management Routines

Functions Modes
ier = cgio_is_link(int cgio_num, double id, int *link_len); r w m

ier = cgio_link_size(int cgio_num, double id, int *file_len , r w m

int *name_len);

ier = cgio_create_link(int cgio_num, double pid, const char *name, - w m

const char *filename, const char *name_in_file, double *id);

ier = cgio_get_link(int cgio_num, double id, char *filename , r w m

char *name_in_file);

call cgio_is_link_f(cgio_num, id, link_len , ier) r w m

call cgio_link_size_f(cgio_num, id, file_len , name_len , ier) r w m

call cgio_create_link_f(cgio_num, pid, name, filename, name_in_file, - w m

id , ier)

call cgio_get_link_f(cgio_num, id, filename , name_in_file , ier) r w m

Input/Output

cgio_num Indentifier for the open database file.

id Node identifier.

pid Parent node identifier.

link_len Total length of the link information (file_len + name_len).

file_len Length of the name of the linked-to file. This will be 0 if this is an internal
link.

name_len Length of the pathname of the linked-to node.

name Name of the link node.

filename Name of the linked-to file. If creating an internal link, then this should be
NULL or an empty string. When reading an internal link, this will be returned
as an empty string.

name_in_file Pathname of the linked-to node.

ier Error status.

5.1 Function Descriptions

5.1.1 cgio_is_link

Determines if the node indentified by id in the database given by cgio_num is a link or not. The
function returns 0 if successfull, else an error code. If this node is a link, then the total length of
the linked-to file and node information in returned in link_len. If the node is not a link, link_len
will be 0.

13

CGIO User’s Guide

5.1.2 cgio_link_size

Gets the size of the linked-to file name in file_len and the node pathname length in name_len for
the node identified by id in the database given by cgio_num. The function returns 0 for success,
else an error code. If this is an internal link (link to a node in the same database), then file_len
will be returned as 0.

5.1.3 cgio_create_link

Creates a link node as a child of the parent node identified by pid in the database given by cgio_num.
The name of the node is given by name, the name of the linked-to file by filename, and the pathname
to the linked-to node by name_in_file. If this is an internal link (link to a node in the same
database), then filename should be defined as NULL or an empty string. The function returns 0 and
the indentifier of the new node in id on success, otherwise an error code is returned.

5.1.4 cgio_get_link

Gets the link information for the node identified by id in the database given by cgio_num. If
successfull, the function returns 0 and the linked-to file name in filename and the node path-
name in name_in_file. These strings are ’0’-terminated, and thus should be dimensioned at least
(file_len + 1) and (name_len + 1), respectively If this is an internal link (link to a node in the
same database), then filename will be an empty string. The maximum length for a file name is
given by CGIO_MAX_FILE_LENGTH (1024) and for a link pathname by CGIO_MAX_LINK_LENGTH (4096).

14

6 Node Management Routines

6 Node Management Routines

Functions Modes
ier = cgio_get_node_id(int cgio_num, double pid, const char *pathname, r w m

double *id);

ier = cgio_get_name(int cgio_num, double id, char *name); r w m

ier = cgio_set_name(int cgio_num, double pid, double id, - w m

const char *name);

ier = cgio_get_label(int cgio_num, double id, char *label); r w m

ier = cgio_set_label(int cgio_num, double id, const char *label); - w m

ier = cgio_get_data_type(int cgio_num, double id, char *data_type); r w m

ier = cgio_get_dimensions(int cgio_num, double id, int *ndims , r w m

cgsize_t *dims);

ier = cgio_set_dimensions(int cgio_num, double id, - w m

const char *data_type, int ndims, const cgsize_t *dims);

call cgio_get_node_id_f(cgio_num, pid, name, id , ier) r w m

call cgio_get_name_f(cgio_num, id, name , ier) r w m

call cgio_set_name_f(cgio_num, pid, id, name, ier) - w m

call cgio_get_label_f(cgio_num, id, label , ier) r w m

call cgio_set_label_f(cgio_num, id, label, ier) - w m

call cgio_get_data_type_f(cgio_num, id, data_type , ier) r w m

call cgio_get_dimensions_f(cgio_num, id, ndims , dims , ier) r w m

call cgio_set_dimensions_f(cgio_num, id, data_type, ndims, dims, ier) - w m

Input/Output

cgio_num Database identifier.

pid Parent node identifier.

id Node identifier.

pathname Absolute or relative path name for a node.

name Node name (max length 32).

label Node label (max length 32).

data_type Type of data contained in the node. One of “MT”, “I4”, “I8”, “U4”, “U8”, “R4”,
“C1”, or “B1”.

ndims Number of dimensions for the data (max 12).

dims Data dimension values (ndims values).

ier Error status.

15

CGIO User’s Guide

6.1 Function Descriptions

6.1.1 cgio_get_node_id

Gets the node identifier for the node specified by pathname in the database given by cgio_num. if
pathname starts with “/”, then it is taken as an absolute path and is located based on the root id of
the database, otherwise it is taken to be a relative path from the parent node identifed by pid. The
function returns 0 and the node identifier in id on success, else an error code.

6.1.2 cgio_get_name

Gets the name of the node identified by id in the database given by cgio_num. The name is
returned in name, and has a maximum length of CGIO_MAX_NAME_LENGTH (32). In C, name should
be dimensioned at least 33 to allow for the terminating ’0’. The function returns 0 for success, else
an error code.

6.1.3 cgio_set_name

Sets (renames) the node identied by id in the database given by cgio_num to name. The parent
node identifier is given by pid. There must not already exist a child node of pid with that name.
The function return 0 on success, else an error code.

6.1.4 cgio_get_label

Gets the label of the node identified by id in the database given by cgio_num. The label is returned
in label, and has a maximum length of CGIO_MAX_LABEL_LENGTH (32). In C, label should be
dimensioned at least 33 to allow for the terminating ’0’. The function returns 0 for success, else an
error code.

6.1.5 cgio_set_label

Sets the label of the node identied by id in the database given by cgio_num to label. The function
return 0 on success, else an error code.

6.1.6 cgio_get_data_type

Gets the data type of the data associated with the node identified by id in the database given by
cgio_num. The data type is returned in data_type, and has a maximum length of CGIO_MAX_DATATYPE_LENGTH
(2). In C, data_type should be dimensioned at least 3 to allow for the terminating ’0’. The function
returns 0 for success, else an error code.

6.1.7 cgio_get_dimensions

Gets the dimensions of the data associated with the node identified by id in the database given by
cgio_num. The number of dimensions is returned in ndims and the dimension values in dims. Since
the maximum number of dimensions is CGIO_MAX_DIMENSIONS (12), dims should be dimensioned 12,

16

6 Node Management Routines

unless the actual number of dimensions is already known. The function returns 0 for success, else
an error code.

6.1.8 cgio_set_dimensions

Sets the data type and dimensions for data associated with the node identified by id in the database
given by cgio_num. The data type (data_type) as one of:

“MT” An empty node containing no data

“I4” 32-bit integer (int or integer*4)

“I8” 64-bit integer (cglong t or integer*8)

“U4” 32-bit unsigned integer (unsigned int or integer*4)

“U8” 64-bit unsigned integer (cgulong t or integer*8)

“R4” 32-bit real (float or real*4)

“R8” 64-bit real (double or real*8)

“C1” character (char or character)

“B1” unsigned bytes (unsigned char or character*1)

The number of dimensions is given by ndims (maximum is 12), and the dimension values by dims.
Note that any existing data for the node will be destroyed. To add the data to the node, use one of
the data writing routines (Section 7). The function returns 0 for success, else an error code.

17

CGIO User’s Guide

7 Data I/O Routines

Functions Modes
ier = cgio_read_data(int cgio_num, double id, const cgsize_t *s_start, r w m

const cgsize_t *s_end, const cgsize_t *s_stride, int m_num_dims,

const cgsize_t *m_dims, const cgsize_t *m_start,

const cgsize_t *m_end, const cgsize_t *m_stride, void *data);

ier = cgio_read_all_data(int cgio_num, double id, void *data); r w m

ier = cgio_read_block_data(int cgio_num, double id, cgsize_t b_start, r w m

cgsize_t b_end, void *data);

ier = cgio_write_data(int cgio_num, double id, const cgsize_t *s_start, - w m

const cgsize_t *s_end, const cgsize_t *s_stride, int m_num_dims,

const cgsize_t *m_dims, const cgsize_t *m_start,

const cgsize_t *m_end, const cgsize_t *m_stride, void *data);

ier = cgio_write_all_data(int cgio_num, double id, void *data); - w m

ier = cgio_write_block_data(int cgio_num, double id, cgsize_t b_start, - w m

cgsize_t b_end, void *data);

call cgio_read_data_f(cgio_num, id, s_start, s_end, s_stride, r w m

m_num_dims, m_dims, m_start, m_end, m_stride, data , ier)

call cgio_read_all_data_f(cgio_num, id, data , ier) r w m

call cgio_read_block_data_f(cgio_num, id, b_start, b_end, data , ier) r w m

call cgio_write_data_f(cgio_num, id, s_start, s_end, s_stride, - w m

m_num_dims, m_dims, m_start, m_end, m_stride, data, ier)

call cgio_write_all_data_f(cgio_num, id, data, ier) - w m

call cgio_write_block_data_f(cgio_num, id, b_start, b_end, data, ier) - w m

Input/Output

cgio_num Database identifier.

id Node identifier.

s_start Starting indices for data in the database. Fortran indexing is used (starting at
1).

s_end Ending indices for data in the database. Fortran indexing is used (starting at 1).

s_stride Step increment for data in the database.

m_num_dims Number of dimensions for data in memory.

m_dims Dimension values for data in memory.

m_start Starting indices for data in memory. Fortran indexing is used (starting at 1).

m_end Ending indices for data in memory. Fortran indexing is used (starting at 1).

m_stride Step increment for data in memory.

18

7 Data I/O Routines

data Array of data to be read or written.

b_start Starting offset (index) for the data in the database. Fortran indexing is used
(starting at 1).

b_end Ending offset (index) for the data in the database. Fortran indexing is used
(starting at 1).

ier Error status.

7.1 Function Descriptions

7.1.1 cgio_read_data

This routine provides general purpose read capabilities from the node identified by id in the database
given by cgio_num. It allows for a general specification of the starting location within the data as
well as fixed step lengths (strides) through the data from the initial position. This capability works
for both the data on disk and the data being stored in memory. One set of vectors (s_start, s_end
and s_stride) are used to describe the mapping of the data within the node, and a second set of
vectors (m_start, m_end and m_stride) are used to describe the mapping of the desired data within
memory.

The memory dimensions are given by m_num_dims and m_dims. There is no requirement that the
node dimensions and memory dimensions match, only that the total number of values to be read
are the same for the node and memory specifications.

The data are stored in both memory and on disk in “Fortran ordering.” That is, the first index varies
the fastest, and indexing starts at 1. Negative indexing is not allowed.

Be careful when writing data using cgio_write_all_data and then using cgio_read_data to ran-
domly access the data. cgio_write_all_data takes a starting address in memory and writes N
words to disk, making no assumption as to the order of the data. cgio_read_data assumes that the
data have Fortran-like ordering to navigate through the data in memory and on disk. It assumes
that the first dimension varies the fastest. It would be easy for a C program to use the default array
ordering (last dimension varying fastest) and write the data out using cgio_write_all_data. Then
another program might use cgio_read_data to access a subsection of the data, and the routine
would not return what was expected.

There can be a significant performance penalty for using cgio_read_data when compared with
cgio_read_all_data. If performance is a major consideration, it is best to organize data to take
advantage of the speed of cgio_read_all_data.

The function returns 0 on success, else an error code.

7.1.2 cgio_read_all_data

Reads all the data from the node identified by id in the database given by cgio_num. On success,
the function returns 0 and the data in data, else an error code is returned. Note: Data is returned
in Fortran indexing order.

19

CGIO User’s Guide

7.1.3 cgio_read_block_data

Reads a contiguous block of data from the node identified by id in the database given by cgio_num.
On success, the function returns 0 and the data in data, else an error code is returned. The starting
index is given by b_start and the end by b_end. Note: Fortran indexing order for multi-dimensional
data is used when computing the starting and ending locations.

7.1.4 cgio_write_data

This function is similar to cgio_read_data, but writes the data from memory to the node.

7.1.5 cgio_write_all_data

This function is similar to cgio_read_all_data, but writes the data from memory to the node.

7.1.6 cgio_write_block_data

This function is similar to cgio_read_block_data, but writes the data from memory to the node.

20

8 Error Handling Routines

8 Error Handling Routines

Functions Modes
ier = cgio_error_message(char *error_msg); - - -

void cgio_error_code(int *errcode , int *file_type); - - -

void cgio_error_exit(const char *msg); - - -

void cgio_error_abort(int abort_flag); - - -

call cgio_error_message_f(error_msg , ier) - - -

call cgio_error_code_f(errcode , file_type) - - -

call cgio_error_exit_f(msg) - - -

call cgio_error_abort_f(abort_flag) - - -

Input/Output

error_msg Error message from CGIO or the underlying database manager.

errcode The last error code from CGIO or the underlying database manager.

file_type Where the last error was encountered. CGIO_FILE_NONE for an error coming
from CGIO, else the type of database.

msg An additional message to print, which prefixes the error message before exiting.
This may be NULL or an empty string, in which case it is not printed.

abort_flag Abort on error flag.

ier Error status.

8.1 Function Descriptions

8.1.1 cgio_error_message

Gets the error message for the last error encountered, and returns it in error_msg, Maximum length
of the error message is CGIO_MAX_ERROR_LENGTH (80). In C, error_msg should be dimensioned at
least 81 in the calling routine to allow for the terminating ’0’. The function returns the error code
corresponding to the error message.

8.1.2 cgio_error_code

Returns the last error code in errcode and where is was generated in file_type. If the error code
is < 0, then the error is from the CGIO library, and file_type will be CGIO_FILE_NONE, otherwise
file_type will be the type of database.

8.1.3 cgio_error_exit

Prints msg and any error message to stderr and exits. The exit code will be abort_flag if it is set,
else -1. If msg is NULL or an empty string, then it is not printed.

21

CGIO User’s Guide

8.1.4 cgio_error_abort

Sets the flag to abort (exit) when an error is encountered. If abort_flag is non-zero, then an error
in the CGIO routines or database managers will cause cgio_error_exit to be called. The excep-
tions are cgio_is_supported (Section 3.1.1), cgio_check_file (Section 3.1.2), and cgio_is_link
(Section 5.1.1). These routines will not cause an abort on an error.

8.2 Error Messages

Table 3: CGIO Errors

Code Error Message

0 no error
-1 invalid cgio index
-2 malloc/realloc failed
-3 unknown file open mode
-4 invalid file type
-5 filename is NULL or empty
-6 character string is too small
-7 file was not found
-8 pathname is NULL or empty
-9 no match for pathname
-10 error opening file for reading
-11 file opened in read-only mode
-12 NULL or empty string
-13 invalid configure option
-14 rename of tempfile file failed
-15 too many open files
-16 dimensions exceed that for a 32-bit integer

Table 4: ADF/HDF5 Errors

Code Error Message

1 Integer number is less than a given minimum value
2 Integer value is greater than given maximum value
3 String length of zero of blank string detected
4 String length longer than maximum allowable length
5 String length is not an ASCII-Hex string
6 Too many ADF files opened
7 ADF file status was not recognized

Continued on next page

22

8 Error Handling Routines

Table 4: ADF/HDF5 Errors (Continued)

Code Error Message

8 ADF file open error
9 ADF file not currently opened
10 ADF file index out of legal range
11 Block/offset out of legal range
12 A string pointer is null
13 FSEEK error
14 FWRITE error
15 FREAD error
16 Internal error: Memory boundary tag bad
17 Internal error: Disk boundary tag bad
18 File Open Error: NEW - File already exists
19 ADF file format was not recognized
20 Attempt to free the RootNode disk information
21 Attempt to free the FreeChunkTable disk information
22 File Open Error: OLD - File does not exist
23 Entered area of unimplemented code
24 Subnode entries are bad
25 Memory allocation failed
26 Duplicate child name under a parent node
27 Node has no dimensions
28 Node’s number of dimensions is not in legal range
29 Specified child is not a child of the specified parent
30 Data-Type is too long
31 Invalid Data-Type
32 A pointer is null
33 Node had no data associated with it
34 Error zeroing out of memory
35 Requested data exceeds actual data available
36 Bad end value
37 Bad stride values
38 Minimum value is greater than maximum value
39 The format of this machine does not match a known signature
40 Cannot convert to or from an unknown native format
41 The two conversion formats are equal; no conversion done
42 The data format is not supported on a particular machine
43 File close error
44 Numeric overflow/underflow in data conversion
45 Bad start value
46 A value of zero is not allowable

Continued on next page

23

CGIO User’s Guide

Table 4: ADF/HDF5 Errors (Continued)

Code Error Message

47 Bad dimension value
48 Error state must be either a 0 (zero) or a 1 (one)
49 Dimensional specifications for disk and memory are unequal
50 Too many link levels are used; may be caused by a recursive link
51 The node is not a link. It was expected to be a link.
52 The linked-to node does not exist
53 The ADF file of a linked node is not accessible
54 A node ID of 0.0 is not valid
55 Incomplete data when reading multiple data blocks
56 Node name contains invalid characters
57 ADF file version incompatible with this library version
58 Nodes are not from the same file
59 Priority stack error
60 Machine format and file format are incomplete
61 Flush error
62 The node ID pointer is NULL
63 The maximum size for a file exceeded
64 Dimensions exceed that for a 32-bit integer
70 H5Glink:soft link creation failed
71 Node attribute doesn’t exist
72 H5Aopen:open of node attribute failed
73 H5Iget name:failed to get node path from ID
74 H5Gmove:moving a node group failed
75 H5Gunlink:node group deletion failed
76 H5Gopen:open of a node group failed
77 H5Dget space:couldn’t get node dataspace
78 H5Dopen:open of the node data failed
79 H5Dextend:couldn’t extend the node dataspace
80 H5Dcreate:node data creation failed
81 H5Screate simple:dataspace creation failed
82 H5Acreate:node attribute creation failed
83 H5Gcreate:node group creation failed
84 H5Dwrite:write to node data failed
85 H5Dread:read of node data failed
86 H5Awrite:write to node attribute failed
87 H5Aread:read of node attribute failed
88 H5Fmount:file mount failed
89 Can’t move a linked-to node
90 Can’t change the data for a linked-to node

Continued on next page

24

8 Error Handling Routines

Table 4: ADF/HDF5 Errors (Continued)

Code Error Message

91 Parent of node is a link
92 Can’t delete a linked-to node
93 File does not exist or is not a HDF5 file
94 unlink (delete) of file failed
95 couldn’t get file index from node ID
96 H5Tcopy:copy of existing datatype failed
97 H5Aget type:couldn’t get attribute datatype
98 H5Tset size:couldn’t set datatype size
99 routine not implemented
100 H5L: Link target is not an HDF5 external link
101 HDF5: No external link feature available
102 HDF5: Internal problem with objinfo
103 HDF5: No value for external link
104 HDF5: Cannot unpack external link
106 HDF5: Root descriptor is NULL
107 dimensions need transposed - open in modify mode
108 invalid configuration option

25

CGIO User’s Guide

9 Miscellaneous Routines

Functions Modes
ier = cgio_flush_to_disk(int cgio_num); - w m

ier = cgio_library_version(int cgio_num, char *version); r w m

ier = cgio_file_version(int cgio_num, char *file_version , r w m

char *creation_date , char *modified_date);

call cgio_flush_to_disk_f(cgio_num, ier) - w m

call cgio_library_version_f(cgio_num, version , ier) r w m

call cgio_file_version_f(cgio_num, file_version , creation_date , r w m

modified_date , ier)

Input/Output

cgio_num Database identifier.

version 32-byte character string containing the database library version.

file_version 32-byte character string containing the database file version.

creation_date 32-byte character string containing the database file creation date.

modified_date 32-byte character string containing the last modification date for the
database file.

ier Error status.

9.1 Function Descriptions

9.1.1 cgio_flush_to_disk

Forces any buffered data in the database manager to be written to disk. Returns 0 if successfull,
else an error code.

9.1.2 cgio_library_version

Gets the current library version for the database given by cgio_num. The version is returned in
version which is of maximum length CGIO_MAX_VERSION_LENGTH (32). In C, version should be
dimensioned at least 33 in the calling routine to allow for the terminating ’0’. The function returns
0 if successfull, else an error code.

9.1.3 cgio_file_version

Gets the version, creation and last modified dates, for the database file given by cgio_num. The
version is returned in file_version, which is of maximum length CGIO_MAX_VERSION_LENGTH (32).
The creation date is returned in creation_date, and the last modified date in modified_date,
which are of maximum length CGIO_MAX_DATE_LENGTH (32). In C, these should be dimensioned at
least 33 in the calling routine to allow for the terminating ’0’. The function returns 0 if successfull,
else an error code.

26

10 Examples

10 Examples

The following examples build the database file shown in the example database figure ??.

10.1 Fortran Example

PROGRAM TEST
C
C SAMPLE ADF TEST PROGRAM TO BUILD FILES ILLUSTRATED
C IN THE EXAMPLE DATABASE FIGURE
C

INCLUDE ’cgns_io_f.h’
C

PARAMETER (MAXCHR=32)
C

CHARACTER*(MAXCHR) TSTLBL,DTYPE
CHARACTER*(MAXCHR) FNAM,PATH

C
REAL*8 RID,PID,CID,TMPID,RIDF2
REAL A(4,3),B(4,3)
INTEGER*4 IC(6),ID(6)
INTEGER IERR,ICGIO,ICGIO2
INTEGER IDIM(2),IDIMA(2),IDIMC,IDIMD

C
DATA A /1.1,2.1,3.1,4.1,
X 1.2,2.2,3.2,4.2,
X 1.3,2.3,3.3,4.3/
DATA IDIMA /4,3/

C
DATA IC /1,2,3,4,5,6/
DATA IDIMC /6/

C
C SET ERROR FLAG TO ABORT ON ERROR
C

CALL CGIO_ERROR_ABORT_F(1)
C
C *** 1.) OPEN 1ST DATABASE (ADF_FILE_TWO.ADF)
C 2.) CREATE THREE NODES AT FIRST LEVEL
C 3.) PUT LABEL ON NODE F3
C 4.) PUT DATA IN F3
C 5.) CREATE TWO NODES BELOW F3
C 6.) CLOSE DATABASE
C

CALL CGIO_OPEN_FILE_F(’file_two.cgio’,CGIO_MODE_WRITE,
& CGIO_FILE_ADF,ICGIO,IERR)
CALL CGIO_GET_ROOT_ID_F(ICGIO,RID,IERR)
RIDF2 = RID
CALL CGIO_CREATE_NODE_F(ICGIO,RID,’F1’,TMPID,IERR)
CALL CGIO_CREATE_NODE_F(ICGIO,RID,’F2’,TMPID,IERR)
CALL CGIO_CREATE_NODE_F(ICGIO,RID,’F3’,PID,IERR)

27

CGIO User’s Guide

CALL CGIO_SET_LABEL_F(ICGIO,PID,’LABEL ON NODE F3’,IERR)
CALL CGIO_SET_DIMENSIONS_F(ICGIO,PID,’R4’,2,IDIMA,IERR)
CALL CGIO_WRITE_ALL_DATA_F(ICGIO,PID,A,IERR)

C
CALL CGIO_CREATE_NODE_F(ICGIO,PID,’F4’,CID,IERR)

C
CALL CGIO_CREATE_NODE_F(ICGIO,PID,’F5’,CID,IERR)

C
CALL CGIO_CLOSE_FILE_F(ICGIO,IERR)

C
C *** 1.) OPEN 2ND DATABASE
C 2.) CREATE NODES
C 3.) PUT DATA IN N13
C

CALL CGIO_OPEN_FILE_F(’file_one.cgio’,CGIO_MODE_WRITE,
& CGIO_FILE_ADF,ICGIO,IERR)
CALL CGIO_GET_ROOT_ID_F(ICGIO,RID,IERR)

C
C THREE NODES UNDER ROOT
C

CALL CGIO_CREATE_NODE_F(ICGIO,RID,’N1’,TMPID,IERR)
CALL CGIO_CREATE_NODE_F(ICGIO,RID,’N2’,TMPID,IERR)
CALL CGIO_CREATE_NODE_F(ICGIO,RID,’N3’,TMPID,IERR)

C
C THREE NODES UNDER N1 (TWO REGULAR AND ONE LINK)
C

CALL CGIO_GET_NODE_ID_F(ICGIO,RID,’N1’,PID,IERR)
CALL CGIO_CREATE_NODE_F(ICGIO,PID,’N4’,TMPID,IERR)
CALL CGIO_CREATE_LINK_F(ICGIO,PID,’L3’,’file_two.cgio’,’/F3’,
& TMPID,IERR)
CALL CGIO_CREATE_NODE_F(ICGIO,PID,’N5’,TMPID,IERR)

C
C TWO NODES UNDER N4
C

CALL CGIO_GET_NODE_ID_F(ICGIO,PID,’N4’,CID,IERR)
CALL CGIO_CREATE_NODE_F(ICGIO,CID,’N6’,TMPID,IERR)
CALL CGIO_CREATE_NODE_F(ICGIO,CID,’N7’,TMPID,IERR)

C
C ONE NODE UNDER N6
C

CALL CGIO_GET_NODE_ID_F(ICGIO,RID,’/N1/N4/N6’,PID,IERR)
CALL CGIO_CREATE_NODE_F(ICGIO,PID,’N8’,TMPID,IERR)

C
C THREE NODES UNDER N3
C

CALL CGIO_GET_NODE_ID_F(ICGIO,RID,’N3’,PID,IERR)
CALL CGIO_CREATE_NODE_F(ICGIO,PID,’N9’,TMPID,IERR)
CALL CGIO_CREATE_NODE_F(ICGIO,PID,’N10’,TMPID,IERR)
CALL CGIO_CREATE_NODE_F(ICGIO,PID,’N11’,TMPID,IERR)

C
C TWO NODES UNDER N9

28

10 Examples

C
CALL CGIO_GET_NODE_ID_F(ICGIO,PID,’N9’,CID,IERR)
CALL CGIO_CREATE_NODE_F(ICGIO,CID,’N12’,TMPID,IERR)
CALL CGIO_CREATE_NODE_F(ICGIO,CID,’N13’,TMPID,IERR)

C
C PUT LABEL AND DATA IN N13
C

CALL CGIO_SET_LABEL_F(ICGIO,TMPID,’LABEL ON NODE N13’,IERR)
CALL CGIO_SET_DIMENSIONS_F(ICGIO,TMPID,’I4’,1,IDIMC,IERR)
CALL CGIO_WRITE_ALL_DATA_F(ICGIO,TMPID,IC,IERR)

C
C TWO NODES UNDER N10
C

CALL CGIO_GET_NODE_ID_F(ICGIO,RID,’/N3/N10’,PID,IERR)
CALL CGIO_CREATE_LINK_F(ICGIO,PID,’L1’,’’,’/N3/N9/N13’,TMPID,IERR)
CALL CGIO_CREATE_NODE_F(ICGIO,PID,’N14’,TMPID,IERR)

C
C TWO NODES UNDER N11
C

CALL CGIO_GET_NODE_ID_F(ICGIO,RID,’/N3/N11’,PID,IERR)
CALL CGIO_CREATE_LINK_F(ICGIO,PID,’L2’,’’,’/N3/N9/N13’,TMPID,IERR)
CALL CGIO_CREATE_NODE_F(ICGIO,PID,’N15’,TMPID,IERR)

C
C *** READ AND PRINT DATA FROM NODES
C 1.) NODE F5 THROUGH LINK L3
C

CALL CGIO_GET_NODE_ID_F(ICGIO,RID,’/N1/L3’,PID,IERR)
CALL CGIO_GET_LABEL_F(ICGIO,PID,TSTLBL,IERR)
CALL CGIO_GET_DATA_TYPE_F(ICGIO,PID,DTYPE,IERR)
CALL CGIO_GET_DIMENSIONS_F(ICGIO,PID,NUMDIM,IDIM,IERR)
CALL CGIO_READ_ALL_DATA_F(ICGIO,PID,B,IERR)
PRINT *,’ NODE F3 THROUGH LINK L3:’
PRINT *,’ LABEL = ’,TSTLBL
PRINT *,’ DATA TYPE = ’,DTYPE
PRINT *,’ NUM OF DIMS = ’,NUMDIM
PRINT *,’ DIM VALS = ’,IDIM
PRINT *,’ DATA:’
WRITE(*,100)((B(J,I),I=1,3),J=1,4)

100 FORMAT(5X,3F10.2)
C
C 2.) N13
C

CALL CGIO_GET_NODE_ID_F(ICGIO,RID,’N3/N9/N13’,PID,IERR)
CALL CGIO_GET_LABEL_F(ICGIO,PID,TSTLBL,IERR)
CALL CGIO_GET_DATA_TYPE_F(ICGIO,PID,DTYPE,IERR)
CALL CGIO_GET_DIMENSIONS_F(ICGIO,PID,NUMDIM,IDIMD,IERR)
CALL CGIO_READ_ALL_DATA_F(ICGIO,PID,ID,IERR)
PRINT *,’ ’
PRINT *,’ NODE N13:’
PRINT *,’ LABEL = ’,TSTLBL
PRINT *,’ DATA TYPE = ’,DTYPE

29

CGIO User’s Guide

PRINT *,’ NUM OF DIMS = ’,NUMDIM
PRINT *,’ DIM VALS = ’,IDIMD
PRINT *,’ DATA:’
WRITE(*,200)(ID(I),I=1,6)

200 FORMAT(5X,6I6)
C
C 3.) N13 THROUGH L1
C

CALL CGIO_GET_NODE_ID_F(ICGIO,RID,’N3/N10/L1’,TMPID,IERR)
CALL CGIO_GET_LABEL_F(ICGIO,TMPID,TSTLBL,IERR)
CALL CGIO_READ_ALL_DATA_F(ICGIO,TMPID,ID,IERR)
PRINT *,’ ’
PRINT *,’ NODE N13 THROUGH LINK L1:’
PRINT *,’ LABEL = ’,TSTLBL
PRINT *,’ DATA:’
WRITE(*,200)(ID(I),I=1,6)

C
C 4.) N13 THROUTH L2
C

CALL CGIO_GET_NODE_ID_F(ICGIO,RID,’N3/N11/L2’,CID,IERR)
CALL CGIO_GET_LABEL_F(ICGIO,CID,TSTLBL,IERR)
CALL CGIO_READ_ALL_DATA_F(ICGIO,CID,ID,IERR)
PRINT *,’ ’
PRINT *,’ NODE N13 THROUGH LINK L2:’
PRINT *,’ LABEL = ’,TSTLBL
PRINT *,’ DATA:’
WRITE(*,200)(ID(I),I=1,6)

C
C PRINT LIST OF CHILDREN UNDER ROOT NODE
C

CALL PRTCLD(ICGIO,RID)
C
C PRINT LIST OF CHILDREN UNDER N3
C

CALL CGIO_GET_NODE_ID_F(ICGIO,RID,’N3’,PID,IERR)
CALL PRTCLD(ICGIO,PID)

C
C REOPEN ADF_FILE_TWO AND GET NEW ROOT ID
C

CALL CGIO_OPEN_FILE_F(’file_two.cgio’,CGIO_MODE_READ,
& CGIO_FILE_ADF,ICGIO2,IERR)
CALL CGIO_GET_ROOT_ID_F(ICGIO2,RID,IERR)
PRINT *,’ ’
PRINT *,’ COMPARISON OF ROOT ID: ’
PRINT *,’ file_two.cgio ORIGINAL ROOT ID = ’,RIDF2
PRINT *,’ file_two.cgio NEW ROOT ID = ’,RID

C
CALL CGIO_CLOSE_FILE_F(ICGIO,IERR)
CALL CGIO_CLOSE_FILE_F(ICGIO2,IERR)

C
STOP

30

10 Examples

END
C
C ************* SUBROUTINES ****************
C

SUBROUTINE PRTCLD(ICGIO,PID)
C
C *** PRINT TABLE OF CHILDREN GIVEN A PARENT NODE-ID
C

PARAMETER (MAXCLD=10)
PARAMETER (MAXCHR=32)
REAL*8 PID
CHARACTER*(MAXCHR) NODNAM,NDNMS(MAXCLD)
CALL CGIO_GET_NAME_F(ICGIO,PID,NODNAM,IERR)
CALL CGIO_NUMBER_CHILDREN_F(ICGIO,PID,NUMC,IERR)
WRITE(*,120)NODNAM,NUMC

120 FORMAT(/,’ PARENT NODE NAME = ’,A,/,
X ’ NUMBER OF CHILDREN = ’,I2,/,
X ’ CHILDREN NAMES:’)
NLEFT = NUMC
ISTART = 1

C --- TOP OF DO-WHILE LOOP
130 CONTINUE

CALL CGIO_CHILDREN_NAMES_F(ICGIO,PID,ISTART,MAXCLD,MAXCHR,
X NUMRET,NDNMS,IERR)

WRITE(*,140)(NDNMS(K),K=1,NUMRET)
140 FORMAT(8X,A)

NLEFT = NLEFT - MAXCLD
ISTART = ISTART + MAXCLD

IF (NLEFT .GT. 0) GO TO 130
RETURN
END

The resulting output is:

NODE F3 THROUGH LINK L3:
LABEL = LABEL ON NODE F3
DATA TYPE = R4
NUM OF DIMS = 2
DIM VALS = 4 3
DATA:

1.10 1.20 1.30
2.10 2.20 2.30
3.10 3.20 3.30
4.10 4.20 4.30

NODE N13:
LABEL = LABEL ON NODE N13
DATA TYPE = I4
NUM OF DIMS = 1
DIM VALS = 6
DATA:

31

CGIO User’s Guide

1 2 3 4 5 6

NODE N13 THROUGH LINK L1:
LABEL = LABEL ON NODE N13
DATA:

1 2 3 4 5 6

NODE N13 THROUGH LINK L2:
LABEL = LABEL ON NODE N13
DATA:

1 2 3 4 5 6

PARENT NODE NAME = ADF MotherNode
NUMBER OF CHILDREN = 3
CHILDREN NAMES:

N1
N2
N3

PARENT NODE NAME = N3
NUMBER OF CHILDREN = 3
CHILDREN NAMES:

N9
N10
N11

COMPARISON OF ROOT ID:
file_two.cgio ORIGINAL ROOT ID = 2.
file_two.cgio NEW ROOT ID = 3.

10.2 C Example

/*
Sample CGIO test program to build files illustrated
in example database figure.

*/

#include <stdio.h>
#include <ctype.h>
#include <string.h>

#include "cgns_io.h"

void print_child_list(int cgio_num,double node_id);

int main ()
{
/* --- Node header character strings */
char label[CGIO_MAX_LABEL_LENGTH+1];
char data_type[CGIO_MAX_DATATYPE_LENGTH+1];

32

10 Examples

/* --- Database identifier */
int cgio_num, cgio_num2;

/* --- Node id variables */
double root_id,parent_id,child_id,tmp_id,root_id_file2;

/* --- Data to be stored in database */
float a[3][4] = {{1.1,2.1,3.1,4.1},

{1.2,2.2,3.2,4.2},
{1.3,2.3,3.3,4.3}
};

cgsize_t a_dimensions[2] = {4,3};

int c[6] = {1,2,3,4,5,6};
cgsize_t c_dimension = 6;

/* --- miscellaneous variables */
int i, j;
int error_state = 1;
int num_dims, d[6];
cgsize_t dim_d, dims_b[2];
float b[3][4];

/* ------ begin source code ----- */

/* --- set database error flag to abort on error */
cgio_error_abort(error_state);

/* -------- build file: file_two.cgio ---------- */
/* --- 1.) open database

2.) create three nodes at first level
3.) put label on node f3
4.) put some data in node f3
5.) create two nodes below f3
6.) close database */

cgio_open_file("file_two.cgio",CGIO_MODE_WRITE,CGIO_FILE_NONE,&cgio_num);
cgio_get_root_id(cgio_num,&root_id);
root_id_file2 = root_id;
cgio_create_node(cgio_num,root_id,"f1",&tmp_id);
cgio_create_node(cgio_num,root_id,"f2",&tmp_id);
cgio_create_node(cgio_num,root_id,"f3",&parent_id);
cgio_set_label(cgio_num,parent_id,"label on node f3");

cgio_set_dimensions(cgio_num,parent_id,"R4",2,a_dimensions);
cgio_write_all_data(cgio_num,parent_id,a);

cgio_create_node(cgio_num,parent_id,"f4",&child_id);
cgio_create_node(cgio_num,parent_id,"f5",&child_id);
cgio_close_file(cgio_num);

33

CGIO User’s Guide

/* -------- build file: file_one.cgio ---------- */
/* open database and create three nodes at first level */
cgio_open_file("file_one.cgio",CGIO_MODE_WRITE,CGIO_FILE_NONE,&cgio_num);
cgio_get_root_id(cgio_num,&root_id);
cgio_create_node(cgio_num,root_id,"n1",&tmp_id);
cgio_create_node(cgio_num,root_id,"n2",&tmp_id);
cgio_create_node(cgio_num,root_id,"n3",&tmp_id);

/* put three nodes under n1 (two regular and one link) */
cgio_get_node_id(cgio_num,root_id,"n1",&parent_id);
cgio_create_node(cgio_num,parent_id,"n4",&tmp_id);
cgio_create_link(cgio_num,parent_id,"l3","file_two.cgio","/f3",&tmp_id);
cgio_create_node(cgio_num,parent_id,"n5",&tmp_id);

/* put two nodes under n4 */
cgio_get_node_id(cgio_num,parent_id,"n4",&child_id);
cgio_create_node(cgio_num,child_id,"n6",&tmp_id);
cgio_create_node(cgio_num,child_id,"n7",&tmp_id);

/* put one nodes under n6 */
cgio_get_node_id(cgio_num,root_id,"/n1/n4/n6",&parent_id);
cgio_create_node(cgio_num,parent_id,"n8",&tmp_id);

/* put three nodes under n3 */
cgio_get_node_id(cgio_num,root_id,"n3",&parent_id);
cgio_create_node(cgio_num,parent_id,"n9",&tmp_id);
cgio_create_node(cgio_num,parent_id,"n10",&tmp_id);
cgio_create_node(cgio_num,parent_id,"n11",&tmp_id);

/* put two nodes under n9 */
cgio_get_node_id(cgio_num,parent_id,"n9",&child_id);
cgio_create_node(cgio_num,child_id,"n12",&tmp_id);
cgio_create_node(cgio_num,child_id,"n13",&tmp_id);

/* put label and data in n13 */
cgio_set_label(cgio_num,tmp_id,"Label on Node n13");
cgio_set_dimensions(cgio_num,tmp_id,"I4",1,&c_dimension);
cgio_write_all_data(cgio_num,tmp_id,c);

/* put two nodes under n10 (one normal, one link) */
cgio_get_node_id(cgio_num,root_id,"/n3/n10",&parent_id);
cgio_create_link(cgio_num,parent_id,"l1"," ","/n3/n9/n13",&tmp_id);
cgio_create_node(cgio_num,parent_id,"n14",&tmp_id);

/* put two nodes under n11 (one normal, one link) */
cgio_get_node_id(cgio_num,root_id,"/n3/n11",&parent_id);
cgio_create_link(cgio_num,parent_id,"l2"," ","/n3/n9/n13",&tmp_id);
cgio_create_node(cgio_num,parent_id,"n15",&tmp_id);

/* ----------------- finished building file_one.cgio ------------- */

34

10 Examples

/* ------------- access and print data --------------- */

/* access data in node f3 (file_two.cgio) through link l3 */
cgio_get_node_id(cgio_num,root_id,"/n1/l3",&tmp_id);
cgio_get_label(cgio_num,tmp_id,label);
cgio_get_data_type(cgio_num,tmp_id,data_type);
cgio_get_dimensions(cgio_num,tmp_id,&num_dims,dims_b);
cgio_read_all_data(cgio_num,tmp_id,b);
printf (" node f3 through link l3:\n");
printf (" label = %s\n",label);
printf (" data_type = %s\n",data_type);
printf (" num of dims = %5d\n",num_dims);
printf (" dim vals = %5d %5d\n",dims_b[0],dims_b[1]);
printf (" data:\n");
for (i=0; i<=3; i++)
{
for (j=0; j<=2; j++)
{
printf(" %10.2f",b[j][i]);

};
printf("\n");

}

/* access data in node n13 */
cgio_get_node_id(cgio_num,root_id,"/n3/n9/n13",&tmp_id);
cgio_get_label(cgio_num,tmp_id,label);
cgio_get_data_type(cgio_num,tmp_id,data_type);
cgio_get_dimensions(cgio_num,tmp_id,&num_dims,&dim_d);
cgio_read_all_data(cgio_num,tmp_id,d);
printf (" node n13:\n");
printf (" label = %s\n",label);
printf (" data_type = %s\n",data_type);
printf (" num of dims = %5d\n",num_dims);
printf (" dim val = %5d\n",dim_d);
printf (" data:\n");
for (i=0; i<=5; i++)
{
printf(" %-4d",d[i]);

}
printf("\n\n");

/* access data in node n13 through l1 */
cgio_get_node_id(cgio_num,root_id,"/n3/n10/l1",&tmp_id);
cgio_get_label(cgio_num,tmp_id,label);
cgio_read_all_data(cgio_num,tmp_id,d);
printf (" node n13 through l1:\n");
printf (" label = %s\n",label);
printf (" data:\n");
for (i=0; i<=5; i++)
{

35

CGIO User’s Guide

printf(" %-4d",d[i]);
}

printf("\n\n");

/* access data in node n13 through l2 */
cgio_get_node_id(cgio_num,root_id,"/n3/n11/l2",&tmp_id);
cgio_get_label(cgio_num,tmp_id,label);
cgio_read_all_data(cgio_num,tmp_id,d);
printf (" node n13 through l2:\n");
printf (" label = %s\n",label);
printf (" data:\n");
for (i=0; i<=5; i++)
{
printf(" %-4d",d[i]);

}
printf("\n\n");

/* print list of children under root node */
print_child_list(cgio_num,root_id);

/* print list of children under n3 */
cgio_get_node_id(cgio_num,root_id,"/n3",&tmp_id);
print_child_list(cgio_num,tmp_id);

/* re-open file_two and get new root id */
cgio_open_file("file_two.cgio",CGIO_MODE_READ,CGIO_FILE_NONE,&cgio_num2);
cgio_get_root_id(cgio_num2,&root_id);
printf (" Comparison of root id:\n");
printf (" file_two.cgio original root id = %g\n",root_id_file2);
printf (" file_two.cgio new root id = %g\n",root_id);

cgio_close_file(cgio_num);
cgio_close_file(cgio_num2);
return 0;

}

void print_child_list(int cgio_num, double node_id)
{

/*
print table of children given a parent node-id

*/
char node_name[CGIO_MAX_NAME_LENGTH+1];
int i, num_children, num_ret;

cgio_get_name(cgio_num,node_id,node_name);
cgio_number_children(cgio_num,node_id,&num_children);
printf ("Parent Node Name = %s\n",node_name);
printf (" Number of Children = %2d\n",num_children);
printf (" Children Names:\n");
for (i=1; i<=num_children; i++)

36

10 Examples

{
cgio_children_names(cgio_num,node_id,i,1,CGIO_MAX_NAME_LENGTH+1,

&num_ret,node_name);
printf (" %s\n",node_name);

}
printf ("\n");

}

The resulting output is:

node f3 through link l3:
label = label on node f3
data_type = R4
num of dims = 2
dim vals = 4 3
data:

1.10 1.20 1.30
2.10 2.20 2.30
3.10 3.20 3.30
4.10 4.20 4.30

node n13:
label = Label on Node n13
data_type = I4
num of dims = 1
dim val = 6
data:
1 2 3 4 5 6

node n13 through l1:
label = Label on Node n13
data:
1 2 3 4 5 6

node n13 through l2:
label = Label on Node n13
data:
1 2 3 4 5 6

Parent Node Name = ADF MotherNode
Number of Children = 3
Children Names:

n1
n2
n3

Parent Node Name = n3
Number of Children = 3
Children Names:

n9
n10
n11

37

CGIO User’s Guide

Comparison of root id:
file_two.cgio original root id = 2
file_two.cgio new root id = 3

38

	Introduction
	The CGIO Software Library
	Node - The Building Block
	Node Attributes
	Supported Data Types
	Glossary of Terms
	Conventions and Implementations
	Limits and Sizes

	Database-Level Routines
	Function Descriptions
	cgio_is_supported
	cgio_check_file
	cgio_open_file
	cgio_close_file
	cgio_get_file_type
	cgio_get_root_id

	Data Structure Management Routines
	Function Descriptions
	cgio_create_node
	cgio_new_node
	cgio_delete_node
	cgio_move_node
	cgio_number_children
	cgio_children_names
	cgio_children_ids

	Link Management Routines
	Function Descriptions
	cgio_is_link
	cgio_link_size
	cgio_create_link
	cgio_get_link

	Node Management Routines
	Function Descriptions
	cgio_get_node_id
	cgio_get_name
	cgio_set_name
	cgio_get_label
	cgio_set_label
	cgio_get_data_type
	cgio_get_dimensions
	cgio_set_dimensions

	Data I/O Routines
	Function Descriptions
	cgio_read_data
	cgio_read_all_data
	cgio_read_block_data
	cgio_write_data
	cgio_write_all_data
	cgio_write_block_data

	Error Handling Routines
	Function Descriptions
	cgio_error_message
	cgio_error_code
	cgio_error_exit
	cgio_error_abort

	Error Messages

	Miscellaneous Routines
	Function Descriptions
	cgio_flush_to_disk
	cgio_library_version
	cgio_file_version

	Examples
	Fortran Example
	C Example

